翻訳と辞書
Words near each other
・ Ultramaratón Fuego y Agua
・ Ultramares Corp. v. Touche
・ Ultramarine
・ Ultramarine (album)
・ Ultramarine (band)
・ Ultramarine (disambiguation)
・ Ultramarine (novel)
・ Ultramarine flycatcher
・ Ultramarine grosbeak
・ Ultramarine kingfisher
・ Ultramarine lorikeet
・ Ultramatic
・ UltraMax
・ Ultramega OK
・ Ultramercial
Ultrametric space
・ Ultramicrobacteria
・ Ultramicroelectrode
・ Ultramicroscope
・ Ultramicroscopy
・ Ultramicrotomy
・ Ultramix
・ UltraMix (Ultra Records album series)
・ UltraMix 2
・ UltraMix 3
・ UltraMixer
・ UltraMon
・ Ultramontanism
・ Ultramort
・ Ultranet


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ultrametric space : ウィキペディア英語版
Ultrametric space
In mathematics, an ultrametric space is a special kind of metric space in which the triangle inequality is replaced with d(x,z)\leq\max\left\. Sometimes the associated metric is also called a non-Archimedean metric or super-metric. Although some of the theorems for ultrametric spaces may seem strange at a first glance, they appear naturally in many applications.
== Formal definition ==

Formally, an ultrametric space is a set of points M with an associated distance function (also called a metric)
:d\colon M \times M \rightarrow \mathbb
(where \mathbb is the set of real numbers), such that for all x,y,z\in M, one has:
# d(x, y) \ge 0
# d(x, y) = 0 iff x=y
# d(x, y) = d(y, x) (symmetry)
# d(x, z) \le \max \left\ (strong triangle or ultrametric inequality).
In the case when M is a group and d is generated by a length function \|\cdot\| (so that d(x,y) = \|x - y\|), the last property can be made stronger using the Krull sharpening〔Planet Math: (Ultrametric Triangle Inequality )〕 to:
: \|x+y\|\le \max \left\ with equality if \|x\| \ne \|y\|.
We want to prove that if \|x+y\| \le \max \left\, then the equality occurs if \|x\| \ne \|y\|. Without loss of generality, let us assume that \|x\| > \|y\|. This implies that \|x + y\| \le \|x\|. But we can also compute \|x\|=\|(x+y)-y\| \le \max \left\. Now, the value of \max \left\ cannot be \|y\|, for if that is the case, we have \|x\| \le \|y\| contrary to the initial assumption. Thus, \max \left\=\|x+y\|, and \|x\| \le \|x+y\|. Using the initial inequality, we have \|x\| \le \|x + y\| \le \|x\| and therefore \|x+y\| = \|x\|.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ultrametric space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.